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Subgroups of Finite Index in a Free Product 
With Amalgamated Subgroup 

By W. W. Stothers 

Abstract. Let G be a free product of finitely many finite groups with amalgamated subgroup. 
Using coset diagrams, a recurrence relation is obtained for the number of subgroups, and of 
free subgroups, of each finite index in G. In the latter case, an asymptotic formula is derived. 
When the amalgamated subgroup is central, the relation takes a simpler form. 

Introduction. Imrich [31 has given a formula for the number of subgroups of each 
finite index in SL(2, Z), the free product of Z4 and Z6 with amalgamated subgroup 
Z2. Here we consider a free product of finite groups with an amalgamated 
subgroup. We obtain a recurrence relation similar to that in [3], though, in the 
general case, we cannot derive an asymptotic formula. More complete results are 
obtained for the number of free subgroups of such a group. Our methods would 
extend easily to a "graph of groups", but the notation would become (more) 
unpleasant. In the case of SL(2, Z), the amalgamated subgroup is central and a 
simpler treatment is possible; we hope to publish the details elsewhere. 

1. Coset Diagrams. Suppose that M is a group with presentation <m E '1)k: 
r = 1, r E 6A >. We may as well assume that m-1 E M, whenever mE -MR. 

Let K < M. The coset diagram 6D = 6D (K) for K is a directed pseudograph with 
vertices labelled by the cosets Km and edges labelled by the elements of %. For 
m E OR, the m-edges indicate the effect of post-multiplication by m on the cosets. 
Write V(6D) for the set of vertices of 6j). Then, by the definition of edges: 

(A) for m E 't, P E V(6)), there is one m-edge into P and one out of P. 
If w = m, ... m, is a word over 6 and P E V(6D), then there is a walk w(P) 

from P defined in the obvious way (follow the ml-edge, e, out of P, the m2-edge 
from the end of e, and so on). With this notation, we also have 

(B) for r EG- 6J, P E V(6)), the walk r(P) ends at P. 
If words w1, W2 over 91 give the same element of M, then (B) implies that, for 

P e V(6D), w,(P) and w2(P) end at the same vertex. Hence, m E M gives a 
permutation 'Irm of V(6D), rTm(P) being the end of w(P) where w is any word 
representing m. If P0 is the vertex labelled by the coset K 1, then 

K = {m E M: Wmm(P0) = Po}, Kn = (m E M: s7m(P0) = 7Tn(Po)}. 

Suppose that m E M and that the word w represents m. Then w(P0) is a walk from 
P0 to the vertex labelled by Km. Hence, 

(C) 6D (K) is connected. 
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Definition. An M-diagram is a directed pseudograph, edge-labelled by 01 which 
is such that (A) and (B) hold. 

Note that, from (A), (B), each element of M defines a permutation of the vertex 
set of an M-diagram. 

Definition. Suppose that 6D is a connected M-diagram and that P E V(6D). 
Then, 

[6D, P] = (nE M: 7tm(P) =FP 

It is clear that [6D, PI is a subgroup of M. Labelling the vertices by the cosets, it is 
clear that 6D = 6D ([D, PI) and I V(6D)I = 1[6D, P]: MI. If Q E V(6D), then, as 6D is 
connected, there is an m E M with 7Tm(P) = Q. Clearly, [6D, Q] = [6D, Pr, and 
each conjugate arises in this way, so that 

PRoPOsITION 1.1. For a group M, there is a one-to-one correspondence between 
connected M-diagrams with m vertices and conjugacy classes of subgroups of index m 
in M. 

If 6D is a connected M-diagram and P, Q E V(6D), then it may happen that 
[6D, P] = [6D, Q]. The number of Q with this property is equal to the index of 
[6D, P] in its normalizer. Since this is not affected by conjugation, the number is 
independent of the choice of P. 

Definitions. (1) For a connected M-diagram 6D, c(6D) is the number of vertices 
which give the same subgroup. 

(2) An M-diagram of order n is an M-diagram with n vertices labelled by 
{1, . ., n}. 

Suppose that 6D is a connected M-diagram of order n. The vertices of 6D are 
implicitly labelled by the cosets of [6D, 1]. Thus, a permutation of the labels 
{2, ... , n) must give a different M-diagram of order n. A permutation a of 
{ ,... ., n) gives the same diagram of order n if and only if 

(i) [6D, I(l)] = [6D, 11, and 
(ii) aI{2.. n iS the permutation induced by the coset labellings for [6D, 1] and 

for [6D, a(l)]. 
It follows that exactly c(6D) permutations give the same diagram of order n. We 
have proved 

PROPOsITION 1.2. (1) A subgroup of index n in M corresponds to (n - 1)! 
M-diagrans of order n. 

(2) A connected M-diagram 6D of order n can be labelled, using {1, . . , n), in 
n!/c(6D) different ways. 

Definition. A property VP of pseudographs is heritable if whenever 6D has 
property 6' so has each union of components of 6D. 

In an M-diagram, each relator gives a closed walk (by (B)), so this lies in a single 
component. Hence, the property, 1'P (M), of being an M-diagram is heritable. 

Definition. Suppose that 'P is a heritable property. Then EQfP, n) is the number 
of pseudographs with property 3' with vertices labelled by { 1, . .. , n}. Eo03, n) is 
the number which is connected. 
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We note that these numbers will be finite, provided that 1'P implies that the 
number of edges at each vertex is bounded by a constant K(6Y). This will be true of 
1'P (M), provided that there is a finite generating set R,. 

Considering the component containing the vertex 1 in each diagram (as in [61), it 
is easy to prove 

PROPOSITION 1.3. Let 1'P be a heritable property such that E(6, n) is finite for each 
n. Then 

E0('ff n) = Ef, n) - n )Eo(6fJ k)E(6J, n-k). 

Definition. For a group M, N(M, n) is the number of subgroups of index n in M. 
Provided that M is finitely generated, each N(M, n) is finite. Applying Proposi- 

tion 1.2(1), 
N(M, n) = Eo0Q(M), n)/ (n - 1)!. 

Combining this with Proposition 1.3, we have 

THEOREM 1.4. For a finitely generated group M, 
n-I 

N(M, n) = n(E('(M), n)/n!) - 2 N(M, k)E(J'(M), n - k)/ (n - k)!. 
k=1 

After this, we concentrate on evaluating the E(', n). 

2. Free Products With Amalgamated Subgroup. We consider the group G, defined 
by 

(1) G = *c{G(i): i = 1,... s 

where s > 2 and, for each i, G(i) is a finite group. To avoid trivial cases, we assume 
that, for each i, I G(i)/ CI > 2. We take the finite set of generators 9 = U G(i). 
Then g-' E 9 when g E 9, and there is a set of relators each of which involves 
symbols from a single G(i). 

Definition. Let 6D be a G-diagram. Then 6DO (resp. 6D (i), 1 < i < s) is the 
subpseudograph with vertex set V(6D) and edge set consisting of the g-edges for 
g E C (resp. g E G(i)). 

It is clear that 6DO (resp. 6D (i)) is a C- (resp. G(i)-) diagram. In a similar way, we 
obtain a C-diagram 60 from a G(i)-diagram &. 

In a case where C = { 1), i.e. G is a free product, a G-diagram can be obtained 
from a collection 6D (1), . . ., 6D (s), where each 6D (i) is a G(i)-diagram with a fixed 
vertex set S. In general, we note that, if 6D is a G-diagram, then, for i = 1, ... ., s 

=DO = 6D(i)09 so that all the 6D(i)o are identical. Conversely, given a collection of 
G(i)-diagrams, with a common vertex and identical induced C-diagrams, we get a 
G-diagram. We have proved 

PROPOSITION 2.1. Suppose that 5 is a finite set and that, for i = 1, .. ., s, 6D is a 
G(i)-diagram with V(6D) = S. Then there is a G-diagram 6D with 6D (i) = D if and 
only if, for 1 < i, j S s, (6D)o = (6D)o. Further, if { 6D ) and { Si } yield G-diagrams 
6DD, &, then 6D = & if and only if, for each i, 6Di = Si. 
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This allows us to compute the E(f (G), n) from the Eff (G(i)), n). 
We note that the G(i), and hence C, are finite groups. From Proposition 1.2(1), 

each has a finite collection of connected diagrams. 
Definitions. (1) Let e(1), . .., eS(m(O)) be the set of connected C-diagrams, with 

C,(1) corresponding to {{ 1). Let c(k) = c((?(k)), g(k) = I V(Q(k))J. (Then g(k) is 
the index of any representative subgroup, and g(k)/c(k) is the size of the con- 
jugacy class. Also, c(l) = g(l) = IC I.) 

(2) For i = 1, . .. , s, let 6 (i, 1), . .. , 6 (i, m(i)) be the set of connected G(i)- 
diagrams, with 6 (i, 1) corresponding to ((111. Let c(i,j) = c(9 (i, j)) and g(i, j)= 

I V(6 (i, j))l. (For each i, c(i, 1) = g(i, 1) = G(i) .) 
Any M-diagram consists of a number of components. As noted above, each 

component is a connected M-diagram. 
Definition. Suppose that (e is a C-diagram consisting of r6l1(k) copies of (3(k), 

k = 1, . . . , m(O). Then e is of C-type r4C1 = (rflI(l), . . ., r[Q?J(m(O))). 
As e (k) has g(k) vertices, a diagram of C-type r has n vertices, where 

(2) n = , r(k)g(k). 
k 

Since a G- (or G(i)-) diagram defines a C-diagram, we can talk of the C-type of 
such a diagram. 

Definition. For relevant i,j, k, s(ij, k) is the number of copies of (2(k) in 
6 (i,A). 

Definition. Let i E (1, .I . , s}. Suppose that 6b is a G(i)-diagram with w[6D1(i,j) 
copies of 6 (i, j). Then 6 is of i-type w[(6D ](i) = (w[i6D ](i, 1), . . . , w[6iD ](i, m(i))). 

A G(i)-diagram of i-type w(i) has C-type r, where, for each k, 

(3) r(k) = 2 w(i,j)s(i,j, k). 
j 

Definitions. (1) For each n, S(n) is the set of r such that (2) holds. 
(2) For r E S(n), T(i, r) is the set of w(i) such that (3) holds for all k. 
Then S(n) consists of the C-types which are possible for diagrams with n 

vertices, and, for each i, T(i, r) consists of the i-types which are compatible with 
the C-type r. 

Suppose that 6D is a G-diagram of C-type r and i-type w(i), i = 1, . S. . Let 
n = IV('6D)f. We consider the labelling of 6j by (1, ... , n}. We can split 

{f1, .. , n) into r(k) subsets of size g(k), k = 1, . .. , m(O), in 

n!/ l {r(k)! (g(k)!)r(k)} 
k 

different ways. By Proposition 1.2(2), each (2(k) can be labelled g(k)!/c(k) ways 
by a fixed set of size g(k). Hence 6j)o can be labelled in 

(4) LO(r) = n!/ll {r(k)!c(k)r(k)} 
k 

ways. For i E { 1, ... , s), we can argue as for (4) to see that 6D (i) can be labelled 
in 

(5) L1(w(i)) = n!/ II { w(i, j)! c(i, j)w(iJ)} 
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ways. We have considered all labellings of 6D (i), so each induced labelling of 6Do 
occurs equally often, so that we have 

PROPOSITION 2.2. Suppose that r e S(n) and that w(i) E T(i, r). Let & be a 
C-diagram of order n and C-type r. Then the number of G(i)-diagrams 6D, of order n 
and i-type w(i) such that 6Do = &, is L,(w(i))/L0(r). 

Combining Propositions 2.1 and 2.2, we get 

THEOREM 2.3. Suppose that G is defined by (1). Then the number of G-diagrams of 
order n is 

n! {r(k)! c(k)r(k)}s1 I , { w(i,j)!c(i,j)W(iJ)fl- 
r E S(n) i T(i,r) 

Proof. By definition, S(n) includes all possible C-types for diagrams of order n. 
For each r E S(n), T(i, r) includes all w(i) which are compatible with r. A 
C-diagram of C-type r can be labelled in LO(r) ways; see (4). For each labelling, 
there are Lj(w(i))/L0(r) ways of making this into a G(i)-diagram of i-type w(i). 
Hence the number of G-diagrams of order n, which are of C-type r and i-type w(i), 
i= l,...,s,is 

s s 

L0(r). I LA(w(i))/LO(r) = (LO(r))', II LA(W(i)). 
i-I ,Ii 

The result follows from (4) and (5). 
The number obtained in Theorem 2.3 is, of course E(6J(G), n). Using Theorems 

2.3 and 1.4, we get a recurrence relation for N(G, n) involving the E(f (G), m)/m! 
for m < n. This can be used to evaluate the N(G, n) successively. To indicate the 
type of result, we give an example. 

Example. The extended modular group r = PGL(2, Z) has the presentation (see 
pp. 85-86 of [1I) 

(6) f = <t, u, v: t2 =u2 V3 = (tu)2 = (tv)3 = 1>. 

If we put a = tu, b = tv, then 

r = <a, b, t: a2 = b3 - t2 = (at)2 = (bt)2 = 1>, 

r - G(1) *c G(2), 

where G(1) = <a, t>, the Klein 4-group, and G(2) = <b, t>, the symmetric group 
on three symbols, and C = <t> Z2. We have 

C(1) = {{1}}, c(1) g(l) = 2, 
C(2) = (C), c(2) = g(2) = 1. 

For each G(i), we list the pertinent facts in the form 

(G(i, j), c(i, j), g(i, j), s(i, j, 1), s(i, j, 2)), 
where G(i, j) is a group in the class corresponding to 9 (i, j). In this case, m(O) = 2, 
and the last two entries give the C-type of g (i,j). 
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For i = 1, m(l) = 5 and we have the data 

({ 1}, 4, 4, 2, 0), 
(<a>, 2, 2, 1, 0), 
(Kt>, 2, 2, 0, 2), 
(<at>, 2, 2, 1, 0), 

(G(1), 1, 1, 0, 1). 
For i = 2, m(2) = 4 and we have the data 

({1 }, 6, 6, 3,0 ), 
(Kt>, 1, 3, 1, 1), 
(<b>, 2, 2, 1, 0), 

(G(2), 1, 1, 0, 1). 
Then, from the definitions, 

S(n) = {(rl, r2): 2r1 + r2 =n} 

T(1, (rl, r2)) = {(xl, ..* , x5): 2x1 + x2 + x4 = rl, 2x3 + x5 =r2} 

T(2, (rl, r2)) = {(Y1, ... ,Y4): 3y1 + Y2 + Y4 = r1,y2 + y4 = r2). 

Then E(9 (r), n) is given by an eleven-fold sum. The conditions on the elements of 
S(n) and the T(i, r) enable us to reduce this to a six-fold sum, though the presence 
of Y2 in both sums for T(2, r) seems to preclude an elegant formula. We omit the 
actual result but observe that, even in this comparatively simple case, the formula is 
complex. It is doubtful if a good estimate can be made. 

3. Central Amalgamated Subgroup. The calculations are rather simpler when C is 
central in G. 

LEMMA 3.1. Suppose that C is a finite central subgroup of a group G. For a 
connected G-diagram, all comfponents of the induced C-diagram are identical. 

Proof. Suppose that 6D is a connected G-diagram and that 6DO is the induced 
C-diagram (we may as well assume that C is a subset of the chosen generating set 
for G). 

If 6Do is connected, there is nothing to prove. 
Suppose that 6, and 62 are components of 6D. We choose vertices P on &, and 

Q on 62. Then C1 = [6,1 FP and C2 = [62, Q] are subgroups of C. As 6& I g , 
C1 c [6D, FP. If g E C n [6D, P], then, as g E C, it is contained in the generating 
set, and we may take a corresponding path consisting of a single edge (the g-edge 
out of P). As &;1 is a C-diagram, this edge belongs to &; . As g E [ 6D, PF, any path 
for g is closed, so that g E [&;, PF = C1. Hence, C1 = C n [6D, P]. Similarly, 
C2 = C n [6D, Q]. Since 6D is connected, there is an element q E G such that 
Trq (Q) = P. Then [6D, F] = [6D , Q]q", so that C2q = Cq n [61), P]. As C is central, 

= C, and hence C2q = C2. Thus, C2 = C n [PD, P] = Cl. Since these are sub- 
groups defined by 61 and 62, we must have 61 = 62, and the lemma is proved. 

From now on, we shall assume that G is defined by (1) and that C is central in G 
(and so also in each G(i)). Then, as C is abelian, each C(k) corresponds to a single 
(normal) subgroup, C(k) say, and c(k) = g(k) = IC: C(k)I. From the proof of 
Lemma 3.1, the diagram 6DO consists of copies of C(k), where k is such that 
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C(k) = C n [6, P]. Thus, the C-type of a connected G-diagram has exactly one 
nonzero entry. 

Definitions. (1) For k E {1, . , m(0)), let @k(G) be the property of being a 
G-diagram with C-type r such that r(i) = 0, i # k. 

It is clear that 9k(G) is heritable. 
(2) For k E { 1, ... , m(0)}, let Nk(G, n) be the number of subgroups H of index 

n in G such that C n H = C(k). 
From Proposition 1.2(1), we obtain 

Nk(G, n) = Eo(6yk(G), n)/ (n - 1)! 

and hence an analogue of Proposition 1.3. The E(qk(G), n) are easier to compute 
than the E(' (G), n) since the relevant i-types have w(i, j) # 0 only if g (i, j)o 
consists of copies of (2(k). Thus, we can split the 9 (i, j) into those relevant to each 
k. The evaluation of the E(qk(G), n) involve those of just one class. 

Example. Let 

(7) G = <a1, a2: al = a2 = aa2=1>. 

Then G is isomorphic to the free product of two copies of Z4 (e.g. <a,> and <a2>) 
with amalgamated subgroup Z2 (<a 2> = <a 2>). In this example, all groups in- 
volved are abelian, so each conjugacy class consists of a single subgroup. We have 
m(O) = 2 and 

C(1) = {1}, c(1) = g(l) = 2, 

C(2) = <aK2>9 c(2) = g(2) = 1. 

With the notation of the previous example, we have, for i = 1, 2, m(i) = 3 and the 
data 

({1 }, 4, 2,0 ), 

(<ai>, 2, 2, 0, 2), 
(<a,>, 1, 1, 0, 1). 

Subgroups H with H n C = {1) involve only C(1) and hence only the G(i, 1), so 
that E(f1(G), n) is zero unless n is divisible by 4. The argument for Theorem 2.3 
yields 

EQ,'1(G), 4m) = (4m)! (2m)!/ (2mm!)2. 

It follows that N1(G, n) is zero unless 4 divides n, and 

N1(G, 4m) = 4m(2m)! (2mm!)-2 

(8) m-1 
(- N1(G, 4k)(2(n - k))! (2n-k(n -k)!)2. 

k= 1 

For m = 1, the sum is empty, so that N1(G, 4) = 2. Assume (inductively) that 
N1(G, 4i) = 2, i = 1, ... , m - 1. Then the sum in (8) becomes 

rn-i 

2 
m 

(2k)! (2kk!)-2. 
k-1 
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From Section 2 of [5], we have the identity (omitting the erroneous "!" on the right) 
m 

(2m + 1)(2mm!)-2 = I (2j)! (2j!)-2. 

j=O 

Then (8) yields N1(G, 4m) = 2. Hence N1(G, 4m) = 2 for all m. 
For N2(G, n), we could proceed using the EQi2(G), n). Now only G(i, 2) and 

G(i, 3) can occur, and the induced C-diagrams are loops. We obtain 

[n/21 2 

E('Y2(G), n) = n! { ,(k! (n - 2k)!2k)-'}. 
k =0 

However, it is quicker to observe that, in the notation of [4], E('Y2(G), n) = 

(T2(n))2. By the results of that paper, N2(G, n) is equal to the number of subgroups 
of index 2 in Z2 * Z2 (both satisfy the same recurrence). The latter number is given 
in [5], and it follows that 

N2(G, n) = +, 
n odd, 

n + 1,n even. 

As a footnote, we observe that the relationship between N2(G, n) and N(Z2 * Z2, n) 
is not accidental. Noting that G/ C - Z2 * Z2 in this case, the reader should be 

able to find a short (algebraic) proof of the relationship we 'discovered' in the 

calculation. 

4. Free Subgroups. As we might expect on comparing [4] with [5], we can get 
more detailed results for the number of free subgroups. 

Definition. For a group G, let NO(G, n) be the number of free subgroups of index 
n in G. 

Throughout this section, we shall assume that G is defined by (1). We shall 
evaluate No by means of a suitable heritable property. 

LEMMA 4.1. A G-diagram GD corresponds to a class of free subgroups if and only if, 
for i = 1, ... , s, 6@(i) consists of copies of (i, 1) (the diagram for the trivial 
subgroup). 

Proof. We observe that, as C is finite, a free subgroup H cannot have nontrivial 

intersections with C or with any of its G-conjugates, i.e. for each g E G, 

(9) HnCg={1}. 

Then the theorem of H. Neumann, quoted in [2], applies to show that the subgroup 
H (since it satisfies (9)) is the free product of a free group and conjugates of 

subgroups of the G(i). Thus, if H is free, these subgroups must be trivial, since the 

G(i) are finite. Conversely, if H has trivial intersection with each conjugate of each 

G(i), then (9) holds (as C C G(1)). Then, again by Neumann's theorem, H is free. 
From the proof of the theorem given in [2], the condition we have obtained is 

equivalent to that in the statement of the lemma. 

Definition. Let 'Yo(G) be the property that a pseudograph 6D is a G-diagram such 
that, for each i, 'D (i) consists of copies of 9 (i, 1). 

Clearly, 'Yo(G) is a heritable property. By Lemma 4.1, the connected diagrams 
with the property are precisely those which correspond to free subgroups. Since 
9 (i, 1) has G(i) vertices, a diagram 6D with property @0(G) must have IV(6D)I, a 
multiple of IG(i)I. 
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Definition. Let m(G) = l.c.m.{IG(i)t: i = 1, ... ., s}. 
Then E(f3o(G), n) is zero unless m(G) divides n. The calculation of 

E(6PO(G), m(G)n) involves only the C-type (m(G)n/ICI O,, . . . , 0) and the i-type 
(m(G)n/IG(i)I, 0, ... ., 0), i = 1, . , s. We get 

Effo(G)q m(G)n)/ (m(G)n)! 

= (m(G)n/I l) 1 CjICm(G)n/jCI} -l/ II {(m(G)n/l G(i)l)! lG(i)lm(G)n/lG(i)l}. 

We observe that the right-hand side depends only on the orders ICI and the IG(i)I 
of the groups appearing in (1) and not on their structures. Indeed, most of the 
factors depend on ratios of these, e.g. m(G)/ICI. We write G* for the free product 
of cyclic groups of orders IG(i)l/ICI, i = 1, .. ., s. Then m(G*) is defined (since 
G* is a free product) and m(G*) = m(G)/ICI. Further, 

(10) E(6P0(G), m(G)n)/ (m(G)n)! 

IC lIm(G*)s(G*)nE(90(G*), m(G*)n)/ (m( G*)n)!, 

where 
S S 

,(G*) = s - 1 - T ICI/IG(i)l =-I + 2 {l - (IG(i)l/ICI 1.)- 
i-i i-i 

Since s > 2, and, for each i, IG(i)l/ICI > 2, I(G*) > 0 except when G* = Z2 * Z2 
(when u(G*) = 0). Except in the last case, tL(G*) is a constant multiple of the 
hyperbolic area of the Fuchsian group isomorphic to G*. 

Using (10), and Proposition 1.3 applied to G and to G*, we have 

THEOREM 4.2. For the group G defined by (1), N0(G, n) is zero unless m(G) divides 
n and 

N0(G, m(G)n) = IC I+m(G*),t(G-)nN0(G* m(G*)n). 

There is an algebraic proof of Theorem 4.2 when C is normal and G* is the free 
product of the groups G(i)/ C (note that, as above, the value of the right-hand side 
of (10) depends on the orders of the factors but not upon their structures). The 
general case of Theorem 4.2 seems to depend on the diagram argument. 

We have chosen G* as a free product of cyclic groups so that the results of [5] 
apply. From (5) of [51 and Theorem 4.2 above, we get 

THEOREM 4.3. Let G be the group defined by (1). Then 

(i) if !(G*) > 0, 

NO(G, m(G)n)(ICjI/2,) { I1jC G*)) 

* (I(G*)- 11 IG(i)IIICI) (m(G*)A(G*)n)!, 

(ii) if ,u(G*) = 0, i.e. G* =Z2 * Z2, 

N0(G, m(G)n) = jCI. 

We note that there are recurrence relations for the N0(G, n) derived from 
Theorem 4.2 and the results of [5]. These do not involve the E(f3o(G), n). 
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5. The Case C = { 1). We note that the definition of G and the above calcula- 
tions do not require that C be nontrivial. Thus, our results apply to the case where 
G is a free product of finite groups. In this case, C = (1), so that there is only one 
connected C-diagram (a single vertex). This produces some simplification in the 
formula for N(G, n)-the sum over k disappears (m(O) = 1, r(l) = n, c(l) = 1) and 
the condition on i-types is simply that n = -E g(i,j)w(i,j). If, further, each G(i) is 
cyclic, then more simplification occurs since the g(i, j) are precisely the divisors of 
IG(i)l occurring once each. This produces the formulae of [41. 
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